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As a consequence of degeneracies arising from crystal sym-
metries, it is possible for electron states at band-edges
(‘valleys’) to have additional spin-like quantum numbers1–6.
An important question is whether coherent manipulation can
be performed on such valley pseudospins, analogous to that
implemented using true spin, in the quest for quantum technol-
ogies7,8. Here, we show that valley coherence can be generated
and detected. Because excitons in a single valley emit circularly
polarized photons, linear polarization can only be generated
through recombination of an exciton in a coherent superposi-
tion of the two valley states. Using monolayer semiconductor
WSe2 devices, we first establish the circularly polarized
optical selection rules for addressing individual valley excitons
and trions. We then demonstrate coherence between valley
excitons through the observation of linearly polarized lumines-
cence, whose orientation coincides with that of the linearly
polarized excitation, for any given polarization angle. In con-
trast, the corresponding photoluminescence from trions is not
observed to be linearly polarized, consistent with the expec-
tation that the emitted photon polarization is entangled with
valley pseudospin. The ability to address coherence9,10, in
addition to valley polarization11–15, is a step forward towards
achieving quantum manipulation of the valley index necessary
for coherent valleytronics.

Monolayer group VI transition-metal dichalcogenides are
recently discovered two-dimensional semiconductors16. They have
a direct bandgap in the visible range, with the band-edge located
at energy degenerate valleys (+K) at the corners of the hexagonal
Brillouin zone17,18. Initial experiments have demonstrated the for-
mation of highly stable neutral and charged excitons in these mono-
layer semiconductors, where optically excited electrons and
holes are bound together by strong Coulomb interactions19,20. In
conventional semiconductors, such as GaAs, excitons and trions
form at the Brillouin zone centre. However, in monolayer
transition-metal dichalcogenides, confinement of electrons and
holes to the +K valleys gives rise to valley excitons and trions,
formed at an energy-degenerate set of non-central points in
momentum space.

In principle, these valley excitons offer unprecedented opportu-
nities to dynamically manipulate valley index using optical means,
as has been done for optically driven spintronics. Previous work
has shown that the structural inversion asymmetry present in
monolayer transition-metal dichalcogenides gives rise to valley-
dependent circularly polarized optical selection rules using the

single particle picture1,11. Recent observations and electrical
control of polarized photoluminescence in atomically thin molyb-
denum disulphide are important steps towards the optical gener-
ation and detection of valley polarization11–15. A more challenging
but conceptually appealing possibility is to realize quantum coher-
ence between the two well-separated band extrema in momentum
space, that is, valley quantum coherence, which has not been
achieved in solid-state systems.

Here we investigate the generation and readout of excitonic inter-
valley quantum coherence in monolayer WSe2 devices using polar-
ization-resolved photoluminescence spectroscopy. We obtained
monolayer WSe2 by mechanical exfoliation of synthetic WSe2 crys-
tals onto 300 nm SiO2 on heavily doped silicon substrates. Figure 1a
presents a microscope image of a device fabricated by electron-beam
lithography. We then used photoluminescence spectroscopy to
investigate the valley excitonic properties in this two-dimensional
system. The sample was studied at a temperature of 30 K with an
excitation energy of 1.88 eV and spot size of 1.5 mm, unless other-
wise specified. We also verified that the applied laser power was
within the linear response regime (Supplementary Fig. S1).

Figure 1b presents a two-dimensional spatial map of integrated
exciton photoluminescence intensity, which confirms the approxi-
mately uniform optical quality of the sample. Figure 1c plots the
photoluminescence spectrum along the spatial line cut indicated
in Fig. 1b, and clearly shows two pronounced excitonic emission
features at 1.71 and 1.74 eV. We identified that these two highest-
energy excitonic emissions are associated with the A exciton21 by
comparing the differential reflection spectrum (black curve,
Fig. 1d) with the photoluminescence spectrum12,19,22 (red curve,
Fig. 1d). These sharp and well-separated excitonic features are in
clear contrast with the broad spectral width of photoluminescence
emission in monolayer MoS2

11–13,17,18, but are comparable with
recent observations in monolayer MoSe2 (ref. 19).

We assigned the exciton species by monitoring the photolumi-
nescence emission as a function of gate voltage Vg, which controls
the monolayer carrier density. Figure 2a shows the photolumines-
cence map versus photon energy and Vg. The spectral features
below 1.675 eV probably arise from phonon side bands, which are
gate-tunable; these are not discussed here. When Vg is near zero,
this monolayer semiconductor is approximately intrinsic, and
neutral exciton (Xo) emission at 1.749 eV dominates. By either
increasing or decreasing Vg, excess electrons or holes are injected
into the monolayer. Xo tends to capture an extra carrier to form a
bounded three-particle system (trion) with smaller emission
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energy23. The data demonstrate that we can either obtain Xþ (two
holes and one electron) at negative Vg or X2 (two electrons and
one hole) at positive Vg (ref. 19).

At Vg larger than 20 V, a photoluminescence feature (X2’)
emerges on the low-energy side of X2 and dominates the spectrum
as Vg (electron concentration) continues to increase. As a function
of Vg, the photoluminescence intensity, shift in binding energy
(Fig. 2b, inset), differential reflection spectrum (Supplementary
Fig. S2) and polarization dependence (presented below) show that
X2’ behaves in the same way as X2 and thus probably arises from
the fine structure of X2. Figure 2b plots the peak intensity of Xo,
Xþ, X2 and X2’ as a function of Vg, and clearly shows the gate-
tunable excitonic emission.

The binding energy of trions can be directly extracted by taking
the energy difference between the trion and neutral exciton in

Fig. 2a. Because of the true two-dimensional nature and large effec-
tive mass of the carriers, the binding energies of trions in monolayer
WSe2 are much greater than in quasi two-dimensional systems19,20.
Within the applied voltage range, the binding energy of Xþ varies
from 24 meV near Vg¼ 0 to 30 meV near Vg¼260 V, while that
of X2 changes from 30 meV to 40 meV over a range of 45 V
(Fig. 2b, inset). Because the peak position of Xo is nearly indepen-
dent of Vg while trions redshift, the significant tuning of trion
binding energies as a function of Vg is most probably a result of
the quantum-confined Stark effect24.

We now turn to the investigation of valley exciton polarization.
Figure 3a shows the polarization-resolved photoluminescence
spectra at selected gate voltages under sþ light excitation. The com-
plete data set, including all Vg and s2 excitation, can be found in
Supplementary Figs S3 and S4. The data show that the photolumi-
nescence of Xþ, Xo, X2 and X2’ are all highly circularly polarized.
This observation demonstrates that valley optical selection rules1

derived from the single particle picture are inherited by both
neutral and charged excitonic states. It is thus feasible to selectively
address valley degrees of freedom through these sharp and well-sep-
arated exciton species by using circularly polarized optical fields.
The ground-state configurations for valley excitons and trions and
their optical selection rules are shown schematically in Fig. 3b.

We also investigated the polarization of valley excitons as a func-
tion of photoexcitation energy. Figure 3c shows the polarization-
resolved photoluminescence spectra with sþ excitation for different
photon energies. We define the photoluminescence polarization as
r =

(
PL(s+) − PL(s−)

)
/
(
PL(s+) + PL(s−)

)
where PL(s+) is the

detected photoluminescence intensity for polarization s+.
Figure 3d plots the peak polarization of Xþ (yellow star), X2 (red
circle), Xo (black triangle) and X2’ (blue square) as a function of
photoexcitation energy. The data show that r does not decrease sig-
nificantly as photoexcitation energy increases from 1.79 eV to
2.33 eV, �80 times the exciton linewidth above the valley exciton
emission energy. This remarkable observation is distinct from the
previous valley polarization reported in monolayer MoS2 (refs 11–13),
where valley polarization was generated only when the photo-
excitation energy was within the linewidth of the exciton emission.
Our observation suggests that these neutral and charged valley
excitons have robust optical selection rules within a large
neighbourhood of the K point in the Brillouin zone11, and that inter-
actions during hot-carrier relaxation are not the main mechanisms
causing valley depolarization.

The most significant finding is that for linearly polarized light
excitation, Xo emission is also highly linearly polarized (r¼ 0.4),
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while trion photoluminescence is not. Figure 4a shows the photolu-
minescence spectra at selected Vg under horizontally (H) polarized
light excitation at 1.88 eV (Supplementary Figs S5 and S6 show the
complete data set). The data show that the H component of Xo

(black curve) is much stronger than the vertically polarized (V)
photoluminescence component (red curve), while trions have
equal photoluminescence intensity for either H or V detection.

By investigating the linearly polarized photoluminescence for
arbitrarily oriented linearly polarized excitation, we found that the
observed Xo polarization is independent of crystal orientation.
Figure 4b shows polar plots of Xo peak intensity as a function of
detection angle for a given incident linear polarization angle u.
The blue lines are fits using r¼ A × (1þ r× cos 2[x 2 w])
where A is a normalization constant, x is the angle of detection
and w is the Xo polarization angle. We extract w and plot it as a func-
tion of u in Fig. 4c, which is fit well by a line with a slope of unity.
The data demonstrate that w is completely determined by u, and r is
isotropic (red squares in Fig. 4c). Linearly polarized Xo emission has
been observed in other solid-state systems. For example, crystal ani-
sotropy will lead to linearly polarized exciton emission with the
polarization axis predetermined by the axis of anisotropy25–27. In
systems that lack crystal anisotropy, the isotropic linear polarization
can be generated if excitonic coherence is maintained for longer
than the exciton recombination time28–31.

Because monolayer WSe2 has three-fold rotational symmetry, we
attribute the above finding to the generation of excitonic quantum
coherence between opposite valleys by linearly polarized light. We
have shown that with sþ (s2) polarized laser excitation, Xo is
highly polarized at the 2K (þK) valley by the circularly polarized
valley optical selection rule (Fig. 3b). Because linear polarization
is a coherent superposition of sþ and s2, it will simultaneously
excite both 2K and þK valleys and transfer the optical coherence
to valley quantum coherence; that is, the photoexcited electron–
hole pair is a linear superposition in the valley subspace,

∑
q

a(q) e−iuê+−K+q
2,�

ĥ+
K−q

2,⇑
+ e+iuê+K+q

2,�
ĥ+
−K−q

2,⇓

( )
|Fl

Here a(q) is the linear superposition expansion coefficient, q is the
wave vector measured from the K points, |Fl is the vacuum state
with empty conduction bands and fully filled valence bands, ê+k,�
creates a spin-down electron in the conduction band, and ĥ+

−k,⇑ cor-
responds to the creation of a spin-up hole with momentum 2k in
the valence band (annihilation of a spin-down electron with
crystal momentum k). The observation of linearly polarized Xo

photoluminescence parallel to the arbitrarily oriented linearly
polarized excitation implies that the intervalley coherence has
been preserved in the exciton formation.
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Key to the preservation of valley quantum coherence is the equiv-
alence of quantum trajectories for the photoexcited electron (hole)
on states |Kþ ql and | 2 Kþ ql so that their relative phase remains
unchanged in exciton formation. As the exciton emission is at
�1.75 eV, we infer that the 1.88 eV excitation energy is below the
electron–hole continuum because the exciton binding energy in
monolayer transition-metal dichalcogenides is on the order of
0.3–0.5 eV (refs 19,20). Exciton formation mechanisms include
the Coulomb interaction with other carriers and coupling to
phonons to transfer the binding energy32. The former is dominated
by intravalley scattering because of the large momentum space sep-
aration between valleys and the long-range nature of the Coulomb
interaction. The intravalley Coulomb interaction is independent of
the valley index and preserves both the valley polarization and
valley coherence (Supplementary Section S1, Fig. S7). Exciton for-
mation through phonon-assisted intravalley scattering also pre-
serves valley polarization and coherence, as such processes are
also valley-independent (Fig. 4d).

The above physical picture is also consistent with the absence
of linear polarization for trion emission. For the Xþ trion, there
are only two possible configurations, as shown in Fig. 3b,
because the holes at the valley þK (2K) only have spin-down

(-up) states due to the giant spin–valley coupling and time-rever-
sal symmetry1. Upon electron–hole recombination, one Xþ con-
figuration becomes a sþ photon plus a spin-down hole, and
the other becomes a s2 photon plus a spin-up hole. Their
linear superposition can only lead to a spin–photon entangle-
ment: e−iu|s+l| ⇓ l + eiu|s−l| ⇑ l. Linearly polarized photons as
a superposition of sþ and s2 are always forbidden for Xþ emis-
sion, because the hole states associated with sþ and s2

are orthogonal.
For the X2 trion, although the number of possible configurations

is tripled (Supplementary Fig. S8) as electrons in each valley have
both spin-up and spin-down states, only the linear combination
of the two configurations shown in Fig. 3b (and the time reversal
of this combination) can in principle emit a linearly polarized
photon. However, we found that the Coulomb exchange interaction
leads to a fine splitting between these two X2 trion configurations.
This exchange interaction will probably destroy the valley coherence
created by linearly polarized excitation (Supplementary Section S2),
resulting in the absence of linearly polarized photoluminescence for
X2. Thus, our observation of linearly polarized excitons but not
trions strongly indicates the optical generation of excitonic valley
quantum coherence.
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We introduce the Bloch sphere (Fig. 4e) to summarize our work
on the optical manipulation of valley pseudo-spins through valley
excitons and trions. Circularly polarized light prepares valley
pseudo-spin on the north (þK) or south (2K) pole, while arbitrary
linearly polarized light prepares states on the equator as a coherent
superposition of þK and 2K valleys. In principle, states on the
Bloch sphere away from the poles and equator can be created by
elliptically polarized light excitation. Our demonstration of optical
generation of valley coherence shows a viable way to manipulate
valley degrees of freedom in a coherent manner, akin to the manipu-
lation of electron spins for coherent spintronics, and potentially
leading to optically driven coherent valleytronics in a solid-
state system.

The observed degree of polarization of Xo for circular and linear
excitation implies that both the longitudinal and transverse deco-
herence times of the exciton valley pseudospin are comparable to
or even slower than the electron–hole recombination time.
Possible mechanisms of valley decoherence include intervalley scat-
tering of carriers by the Coulomb interaction and phonons. In
addition, the electron–hole exchange interaction in an exciton can
give rise to an effective coupling between its valley pseudospin
and its centre-of-mass motion, which causes valley decoherence33

(Supplementary Section S1). We hope that our work will stimulate
both experimental and theoretical investigations of exciton scatter-
ing and interactions in monolayer semiconductors, to further reveal
the mechanisms and timescales related to valley decoherence.
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