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We present waveguide Bragg gratings with misaligned sidewall corrugations on a silicon-on-insulator platform. The
grating strength can be tuned by varying the misalignment between the corrugations on the two sidewalls. This
approach allows for a wide range of grating coupling coefficients to be achieved with precise control, and substan-
tially reduces the effects of quantization error due to the finite mask grid size. The experimental results are in very
good agreement with simulations using the finite-difference time-domain (FDTD) method. © 2014 Optical Society
of America
OCIS codes: (050.2770) Gratings; (130.3120) Integrated optics devices; (230.7370) Waveguides.
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Silicon photonics is a promising technology for photonic
integrated circuits, and Bragg gratings are a key compo-
nent in this technology. Over the last few years, various
grating structures and devices have been demonstrated,
such as uniform gratings [1], apodized gratings [2],
sampled gratings [3], high-Q phase-shifted grating
cavities [4], and grating-assisted contra-directional cou-
plers [5]. Their applications are also being increasingly
developed for optical communications [6], biosensing
[7], microwave photonics signal processing [8], etc. While
significant efforts and progress have been made in this
field, many challenges still exist. Since silicon waveguide
Bragg gratings are usually based on small physical cor-
rugations, their performance highly depends on the fab-
rication process and can be easily affected by fabrication
imperfections, such as optical lithography smoothing ef-
fect [9], silicon thickness variations [4], and quantization
errors due to the finite mask grid size (e.g., 1, 5, and
6 nm). Strip waveguides are often used for relatively
broadband gratings. As will be discussed shortly, a
500 nm × 220 nm strip waveguide with 50 nm sidewall
corrugations can result in a bandwidth of about
25 nm, and a bandwidth of less than 1 nm would require
corrugations that are challenging to manufacture. How-
ever, numerous applications require narrow bandwidths.
To reduce the bandwidth while keeping the minimum
feature size reasonable, several approaches have been
proposed, such as cladding-modulated gratings [10]
and rib waveguide gratings [1,11]. The former approach
uses weakly coupled pillars outside of the core wave-
guide; however, it is challenging to realize isolated pillars
using optical lithography. The latter has shown band-
widths narrower than 1 nm but requires two etch steps.
In this Letter,we present Bragg gratings based on a strip

waveguide where we intentionally misalign the corruga-
tions on the two sidewalls, as illustrated in Fig. 1(a). This
structure can be broken down into two individual gratings
with a phase offset. When there is no misalignment, the

two gratings are in phase, and all the reflections interfere
constructively at the Bragg wavelength. When there is a
misalignment, the interference becomes less construc-
tive, and therefore, the grating strength becomes weaker.
In the extreme casewhere the twogratings are completely
out of phase, destructive interference occurs, and the
whole structure behaves like a wavy waveguide with es-
sentially no reflection. A similar concept has been imple-
mented in grating-assisted contra-directional couplers to
suppress the back reflections [12]. The superposition of
two gratings can also be used to achieve apodized gratings
[2,13]. Note that all the corrugations here have the same
period. This differs from the multi-period grating concept
where, even though misalignment exists, the multiple
gratings do not interfere with each other because they
operate at different wavelengths [4,14].

Figure 1(b) shows the waveguide cross section, along
with the electric field intensity profile of the first mode
that shows quasi-transverse-electric polarization. The
silicon waveguide layer has a thickness of 220 nm and
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Fig. 1. (a) Top view grating schematic. (b) Waveguide cross
section and mode profile (electric field intensity).
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is sandwiched between the buried oxide layer and upper
cladding of air. The average waveguide width (W) and
corrugation width (ΔW) are designed to be 500 nm and
50 nm, respectively. The grating period (Λ) is 324 nm,
with a duty cycle of 50%. The number of grating periods
is 284 (i.e., corresponding to a grating length of about
92 μm). The misalignment (ΔL) is varied from 0 to 162 nm
(i.e., completely in phase to completely out of phase).
The devices were fabricated using electron-beam lithog-
raphy with a 6-nm grid spacing, as described in [15]. The
scanning electron microscope (SEM) images of the
fabricated gratings are shown in Fig. 2.
The interaction of the grating with the optical mode, or

the grating strength, is often described by the coupling
coefficient (κ), which is the magnitude of the coupling
between the forward and backward propagating modes.
As mentioned above, we can divide the structure into two
individual gratings and write the effective coupling coef-
ficient as:

κ �
���� κ02 � κ0

2
exp�i · 2πΔL∕Λ�

���� � κ0 cos
�
πΔL
Λ

�
; (1)

where κ0 is the coupling coefficient for the grating with
no misalignment (i.e., ΔL � 0), and 2πΔL∕Λ is the phase
offset between the two grating components. In order to
better understand this concept, we performed 3D finite-
difference time-domain (FDTD) simulations using
Lumerical FDTD Solutions [16]. Figure 3 shows the top
view electric field distributions as light travels from left
to right. When the misalignment is zero, light is strongly
reflected back, and the field decays exponentially [4].
When the misalignment is half the grating period, light
transmits through without reflection. In these FDTD sim-
ulations, the mesh size must be sufficiently fine to resolve
the small sidewall corrugations, and the simulation time
must be long enough for the electromagnetic fields to de-
cay. Therefore, the FDTD simulation of the whole struc-
ture is computationally intensive. If the grating is very
weak and long, it can be impractical to run the simulation
to get accurate frequency-domain results. In this work,
we investigate a more efficient FDTD approach, where
we consider an infinitely long Bragg grating and simulate
only one unit cell using Bloch boundary conditions [16].
This is a well-known method for calculating the band
structure of periodic structures such as photonic crystal
waveguides [17]. Bloch boundaries are used along the
propagation direction x, and the Fourier transform of
the time domain signals are used to locate the band

gap, i.e., the center wavelength (λ0) and the bandwidth
(Δλ), of the grating, as shown in Fig. 4. Based on these
results, the coupling coefficient can be calculated as [18]:

κ � πngΔλ∕λ20; (2)

where ng is the group index. As κ represents the amount
of reflection per unit length [19] or the field attenuation
constant for the forward propagating mode, we can also
obtain Eq. (2) using the definition of the intrinsic quality
factor from [20] for an infinitely long grating:

Q � ω0

c
·
ng

α
� 2π

λ0
·
ng

2κ
� λ0

Δλ
; (3)

ΔL = 0 nm ΔL = 42 nm ΔL = 84 nm ΔL = 124 nm ΔL = 162 nm

200nm

Fig. 2. SEM images of the fabricated gratings with various
misalignment lengths.
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Fig. 3. Electric field distributions with light incident from the
left for gratings with (top): ΔL � 0, and (bottom): ΔL �
162 nm, both at the Bragg wavelength for the design of
ΔL � 0. The field is recorded at the middle of the silicon wave-
guide in the vertical direction, i.e., corresponding to the plane of
z � 110 nm in Fig. 1(b).
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Fig. 4. Fourier transform (magnitude) of the time domain sig-
nals from FDTD simulations of one grating cell using Bloch
boundary conditions. The two resonant peaks correspond to
the band edges at the kx � π∕Λ point, and the wavelength range
between the two peaks corresponds to the band gap in which
there are no propagating solutions. Inset: band structure for
ΔL � 0 nm.
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where ω0 is the resonant frequency, and α � 2κ is the in-
tensity attenuation constant. Even though the result of
this simulation is only valid for an infinitely long grating,
this FDTD technique is very useful for predicting κ and
how it is affected by geometric variations such as chang-
ing ΔL or ΔW .
The measurement of the chip was performed on an au-

tomated probe station [21]. Figure 5 shows the normal-
ized transmission spectra of the gratings. When ΔL is
zero, the measured bandwidth is about 25 nm. As ΔL in-
creases, the stop band becomes narrower. When ΔL is
Λ∕2, the stop band disappears and the spectrum becomes
a straight line. The coupling coefficients can be extracted
from these spectra using the method described in [4], and
are shown as the open blue squares in Fig. 6. The simu-
lated coupling coefficients based on Fig. 4 and Eq. (2) are
also shown in Fig. 6. The agreement between the exper-
imental data and the FDTD simulation is excellent. The
theoretical relationship between κ and ΔL, as described
in Eq. (1), is also verified.
We also compare this grating concept with the conven-

tional approach of adjusting the grating strength by

varying the corrugation size. Specifically, we keep ΔL
to be zero and vary ΔW from 10 to 50 nm. As shown
in Fig. 7, the simulated coupling coefficient can be fitted
by a second-order polynomial of ΔW . The difference be-
tween simulation and measurement is more pronounced
than that in Fig. 6, indicating that it is more sensitive to
fabrication errors.

By varying both ΔW and ΔL, we can achieve various
κ values, as shown in Fig. 8. In reality, however, there
are quantization errors due to the finite mask grid size
(6 nm in this case). To evaluate the quantization errors
introduced by the different techniques, we define the
maximum error as half the difference between two con-
secutive achievable κ values, and the results are shown in
Fig. 9. The ΔW -only technique shows significant quanti-
zation errors. Reducing the grid size (e.g., to 2 nm) can
reduce the quantization effect but at the expense of in-
creasing the writing time and cost. The ΔL-only tech-
nique shows smaller and nonuniform errors—large κ
values are less sensitive to ΔL than small κ values, which
can be understood by taking the derivative of Eq. (1) with
respect to ΔL. By combining the two techniques, very
fine-resolution κ values can be obtained.

Note that if the same designs were fabricated using op-
tical lithography, the corrugations would be greatly
smoothed and the grating strength would be much
weaker [9]. Furthermore, for designs with varied grating
strength (e.g., apodized gratings), one of the important
benefits of the ΔL approach is that the lithography
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Fig. 5. Measured transmission spectra for gratings with differ-
ent misalignment lengths. Note that the cut-off of the stop band
between −25 dB and −30 dB was due to the source spontane-
ous emission of the tunable laser used for the measurement [4].
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Fig. 6. Coupling coefficient as a function of misalignment
length for gratings with a fixed corrugation width
(ΔW � 50 nm). The blue open squares come from the measure-
ment data in Fig. 5. The red open squares come from the FDTD
simulation results in Fig. 4. The dashed curves are the fits using
the formula in Eq. (1).

10 20 30 40 50
2

4

6

8

10

12

14
x 104

ΔW (nm)

C
ou

pl
in

g 
C

oe
ffi

ci
en

t (
m

−
1 ) κ = −24ΔW2+3863ΔW+820

Measurement
FDTD Simulation

Fig. 7. Coupling coefficient as a function of corrugation width
for gratings with no misalignment (ΔL � 0).
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Fig. 8. Contour plot of κ versus ΔW and ΔL, based on the
curve fitting results in Fig. 7 and Eq. (1).
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smoothing effects only need to be calibrated once for a
particular ΔW , yet the approach allows for arbitrary gra-
ting strength ranging from 0 to the maximum achievable κ
for the particular ΔW . This is in contrast to modulating
ΔW to create an arbitrary grating strength profile, where
each ΔW needs to be carefully calibrated for lithography
to obtain the correct κ and average effective index val-
ues, thus requiring a dramatically more complicated de-
sign process.
In summary, we have demonstrated integrated wave-

guide Bragg gratings with misaligned sidewall corruga-
tions that allow for precise control of the coupling
coefficient. We have shown that the misalignment’s con-
tribution to the coupling coefficient is a cosine function
of the phase offset, confirmed by both experimental
results and numerical modeling. This approach adds an-
other degree of flexibility to grating designs and consid-
erably reduces the effects of quantization errors, making
it attractive for many complex grating devices.
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